RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
modelscope中,rag向量存储一般用哪个组件呢?

在ModelScope中,RAG向量的存储一般会使用LlamaIndex组件,详细内容如下:

创新互联坚信:善待客户,将会成为终身客户。我们能坚持多年,是因为我们一直可值得信赖。我们从不忽悠初访客户,我们用心做好本职工作,不忘初心,方得始终。10多年网站建设经验创新互联是成都老牌网站营销服务商,为您提供网站设计、成都网站制作、网站设计、HTML5建站、网站制作、成都品牌网站建设重庆小程序开发服务,给众多知名企业提供过好品质的建站服务。

LlamaIndex组件

LlamaIndex是一个专门用于管理和存储embedding向量以及相应索引信息的库,它允许用户将预训练模型生成的密集向量和这些向量对应的索引保存到文件中,以便于后续的检索任务。

1、安装与引入:在使用LlamaIndex之前,需要先进行相应的安装和引入准备工作,这通常包括引入所需的类、tokenizer、模型等,并设置好torch的垃圾回收机制。

2、创建Embedding工具:使用ModelScope提供的文本嵌入方法来创建embedding工具,该工具会利用预训练模型对文本数据进行编码,生成对应的向量表示。

3、构建知识链:通过加载向量数据库和构建知识链,可以将文档中的相关信息链接起来,形成可供检索的知识结构。

4、存储与索引:LlamaIndex提供了将embedding向量和索引存储到文件的方法,具体代码示例中展示了如何使用PromptTemplate、Settings等类和函数来实现这一过程。

5、检索与生成:RAG架构在运行时接收用户查询,并从建立好的索引中检索相关数据,然后将这些数据传递给生成模型,以便生成最终的回答或结果。

LlamaIndex是ModelScope中用于RAG向量存储的关键组件,它通过提供一套完整的工具和方法,帮助用户高效地管理和利用大规模的向量数据。


网站名称:modelscope中,rag向量存储一般用哪个组件呢?
当前URL:http://jxjierui.cn/article/djdcppe.html